Pediatric clear cell sarcoma of the kidney with cavoatrial thrombus

Nidhi Sugandhi a, Gayatri Munghate a, Dhananjay P. Malankar c, Shambhunath Das b, Akshya Kumar Bisoic, Arun Kumar Gupta d, Sandeep Agarwala a,⁎

aDepartment of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
bDepartment of Cardiac Anaesthesia, All India Institute of Medical Sciences, New Delhi, India
cDepartment of Cardiothoracic and Vascular Surgery, All India Institute of Medical Sciences, New Delhi, India
dDepartment of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India

Received 8 June 2011; revised 9 September 2011; accepted 9 September 2011

Key words: Clear cell sarcoma of kidney; Inferior vena caval thrombus; Atrial thrombus

Abstract Clear cell sarcoma of the kidney (CCSK) is a rare renal tumor. Only 4 cases of CCSK with vascular thrombus have been reported, and 2 of these were pediatric cases. One of the children had an intraatrial thrombus as well. We describe a 3-year-old boy who was diagnosed as having a Wilms tumor but did not respond to preresection chemotherapy. He underwent complete resection of the tumor under cardiopulmonary bypass. Histologic examination indicated that the tumor was a CCSK. The patient was then managed with appropriate chemotherapy and radiation therapy and is well 16 months after diagnosis.

© 2011 Elsevier Inc. All rights reserved.

1. Case history

A 3-year-old boy presented with a gradually progressive right-sided abdominal mass of 7-month duration. He was investigated at another center with a contrast-enhanced computed tomographic (CT) scan (CECT) of the abdomen and chest, which showed a right-sided solid renal tumor, with vascular thrombus extending to the right atrium (Fig. 1A-C). Fine-needle aspiration cytology was suggestive of Wilms tumor; hence, neoadjuvant chemotherapy consisting of vincristine, dactinomycin, and doxorubicin was started. However, after 8 weeks of standard chemotherapy, a repeat CECT of the abdomen showed no reduction in size of the renal tumor or the thrombus. It was then that the child was referred to our care. At transfer, the child had a 15 × 12-cm firm, nontender right-sided renal mass. The presence and the extent of the vascular thrombus were confirmed by an
ultrasound Doppler study. A 2-dimensional echocardiogram revealed an inferior vena cava (IVC) thrombus with a 25×35-mm thrombus extending from suprahepatic IVC into the atrium. No superior vena caval obstruction, vegetation, or pulmonary embolism was found, and normal biventricular function was reported.

The child was explored through a median sternotomy incision joining a roof top-right subcostal incision that extended across the midline. A transesophageal Doppler probe was inserted to ascertain the proximal extent of the tumor thrombus intraoperatively and also to detect a patent foramen ovale if present. The child was subsequently put on normothermic cardiopulmonary bypass, without arresting the heart, through the aorta, superior vena cava, and right common femoral vein (Fig. 2). The pulmonary artery trunk was controlled to prevent tumor embolization into the lungs. After division of the falciform ligament and the right triangular ligaments of the liver, the right lobe of the liver was retracted medially to expose the entire length of the infradiaphragmatic IVC. The right renal mass was mobilized, and the right renal artery and ureter were divided between ligatures. Control of the left renal vein and the IVC was obtained just proximal to the renal veins. The right renal vein was then opened, between stay sutures, in continuity with cavotomy, which was extended superiorly onto the right atrium. The entire thrombus was then removed en bloc with the renal mass using endarterectomy instruments (Fig. 1D). Part of the thrombus entering the hepatic veins was also removed. Paracaval and paraaortic lymph node sampling was done as per the protocol for Wilms tumor. The IVC and right atrium were repaired primarily with polypropylene sutures. The patient was then weaned from cardiopulmonary bypass, and the wounds closed.

The histopathology of the resected renal mass and the thrombus revealed a tumor with polygonal cells and moderate cytoplasm with spindling and palisading of nuclei and arborizing blood vessels. There were areas of cystic change and focal areas of necrosis. There was no breach of the renal...

Fig. 1 Contrast-enhanced CT scan at initial presentation showing a large right renal mass (A), thrombus extending into the retrohepatic IVC (B; arrow), thrombus extension into the right atrium (C; arrow), and gross specimen of the resected kidney with the caval and atrial thrombus (D).
capsule, and the hilar vessels, the resected margin of ureter, and all lymph node specimens were free of tumor. The tumor thrombus showed similar histology with focal areas of necrosis and fibrosis. Histopathology was consistent with CCSK. Because bone and brain metastasis are common in CCSK, a postoperative CT scan of the head, skeletal survey, and bone scans were obtained and were negative for brain or bone metastases. The patient was staged as stage 3 (National Wilms Tumor Study staging) in view of the adherent vascular thrombus and the preresection chemotherapy received. The child received 24 weeks of chemotherapy for CCSK, consisting of doxorubicin, cyclophosphamide, vincristine, and etoposide (regimen I: National Wilms Tumor Study-5 protocol). He also received radiotherapy to the flank (1080 cGy in 7 fractions). The patient was followed every 3 months for the first year and underwent surveillance imaging for any local or distant metastases and will be seen in 6-monthly follow-up for the next 5 years, considering the propensity for late metastatic recurrence in CCSK. Currently, the child has completed all treatment and is disease free at 16 months from diagnosis. The present imaging investigations do not reveal any local or distant recurrence. The Doppler studies do not show any flow in the retrohepatic portion of the IVC; however, the patient does not have any pedal edema or hepatomegaly.

2. Discussion

Vascular thrombus is reported in 6% to 9% of cases of Wilms tumor with an intraatrial extension noted in 0.7% to 1.1% [2,7,12]. Only 4 cases of CCSK with vascular thrombus have been reported in the English literature, and only 2 in the pediatric age group [5,6]. Of these 4 cases, 3 had tumor thrombus extending into the atrium [3-5]. Most intracaval and intraatrial thrombus can be delineated by CECT and a Doppler study. However, a magnetic resonance imaging with magnetic resonance imaging angiogram will be able to profile the thrombus more accurately. An echocardiogram will also add to the information on the extent of the intracardiac thrombus, the structure of the heart, and the ventricular function. Most intracaval and intraatrial thrombi in Wilms tumor show a response to chemotherapy, and either resolves completely or can be removed through a cavotomy. Very few cases require exploration under cardiopulmonary bypass [7]. There are variants of Wilms tumor that do not respond rapidly to chemotherapy. If after 8 weeks of chemotherapy, the tumor still remains in the atria, it should be resected instead of persisting with more chemotherapy. This is the same practice used in Wilms tumor because preoperative histologic or cytologic diagnosis of CCSK is not always available. On histologic examination, the diagnosis of CCSK may be missed if entrapped tubules are misinterpreted because tubular differentiation or spindled areas are misinterpreted as mesenchymal differentiation in Wilms tumor [8]. Clear cell sarcoma of the kidney is responsive to chemotherapy but is known to have a poor response; therefore, it becomes imperative to proceed with attempts at complete excision of the approach with its thrombus extension. A multidisciplinary approach to treatment involving the pediatric surgeons, cardiac surgeons, anesthesiologists, cardiologists, radiologists, medical oncologists, and radiation oncologists is advised in such cases. Various options include tumor balloon thrombectomy, excision via atriotomy, IVC resection with or without graft replacement, and resection under vascular isolation or cardiopulmonary bypass [2,7,9-12]. The operative approach in such cases demands attention toward certain specific aspects of the procedure. Because friability of the atrial thrombus, there is a risk of pulmonary or even arterial embolization (through patent foramen ovale if present). To prevent this careful handling and control of the pulmonary artery before any tumor manipulation is an important technical consideration. The IVC is obviously not appropriate for use in cardiopulmonary bypass in such cases; therefore, bypass needs to be established via alternative veins. In our case, the right common femoral vein was used. After having received some preresection chemotherapy, there is a possibility of the tumor thrombus being adhered to the IVC wall, and one may require excising the segment of IVC followed by the use of a graft to restore the continuity as has been observed in Wilms tumors. In the present case, as well as the one reported previously [5], fortunately, the thrombus could be removed using endarterectomy techniques, and the IVC and atrium could be repaired primarily without requiring a graft or patch interposition. Including the present case, 4 of 5 cases of CCSK with vascular thrombus
had atrial extension [3-5]. Whether atrial extension and this kind of nonadherent thrombus are characteristics of CCSK is something that may become clearer with additional experience in future cases.

This rare case of CCSK with cavoatrial thrombus demonstrates that not all cases of renal tumors with vascular thrombus in children are Wilms tumor. Alternate histologic diagnosis should be considered especially in cases of renal tumors where the vascular thrombus does not show any response to preoperative chemotherapy. Considering the fact that CCSK has a poor response to chemotherapy, complete excision of the tumor and thrombus should be attempted, even if it entails extensive surgery under cardiopulmonary bypass.

References

